Barium Aquacobalto(III)undecatungstoborate(6-) 26-Water, $\mathrm{Ba}_{3}\left[\mathrm{BCo}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}\right] . \mathbf{2 6} \mathrm{H}_{2} \mathrm{O}$

By Timothy J. R. Weakley
Chemistry Department, Dundee University, Dundee DD1 4HN, Scotland

(Received 17 August 1983; accepted 30 September 1983)

Abstract

M_{r}=3613.7\), tetragonal, $P 4 / m n c, \quad a=$ 12.397 (1),$\quad c=18.481$ (1) $\AA, \quad V=2840 \AA^{3}, \quad Z=2$, $D_{x}=4.225, \quad D_{m}=4.23(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \mu=$ $25.1 \mathrm{~mm}^{-1}, \lambda=0.71069 \AA, F(000)=3175, R=0.063$ for 960 reflections. The $\mathrm{B} M_{12} \mathrm{O}_{40} \mathrm{H}_{2}^{6-}$ anions ($M=$ $\mathrm{Co}_{1 / 12} \mathrm{~W}_{11 / 12}$) have the Keggin ($\alpha-\mathrm{PW}_{12} \mathrm{O}_{40}^{3-}$) structure. Each lies at a site of crystallographic symmetry $4 / m$, in two equally weighted orientations related by inversion at the B atom.

Introduction. Numerous heteropolytungstate anions of the type $X Z \mathrm{~W}_{11} \mathrm{O}_{40} \mathrm{H}_{n}^{x-}(X=$ tetrahedral $\mathrm{B}, \mathrm{Si}, \mathrm{P}$, etc.; $Z=$ octahedral $\mathrm{Fe}, \mathrm{Co}, \mathrm{Zn}$, etc.) have been characterized since examples were first reported (Baker, Baker, Eriks, Pope, Shibata, Rollins, Fang \& Koh, 1966). Each is derived from an anion having the Keggin $\left(\alpha-\mathrm{PW}_{12} \mathrm{O}_{40}^{3-}\right)$ structure (Keggin, 1934) by the substitution of a $Z-\mathrm{OH}$ or $Z-\mathrm{OH}_{2}$ group for a W atom and its terminal O atom. The substitution lowers the point symmetry of the anion from $\overline{4} 3 m$ to m, but most diffraction studies have been confined to salts in which the anion appears to radiation as an $X\left(Z_{1 / 12} \mathrm{~W}_{11 / 12}\right)_{12}$ species of $\overline{4} 3 m$ symmetry because of disorder of the anion over twelve equally weighted orientations which essentially differ only in the location of the Z atom (Baker, Baker, Eriks, Pope, Shibata, Rollins, Fang \& Koh, 1966; Barrett, 1972; Weakley, 1982). We determined the structure of the title compound because the possible space groups ($P 4 n c$ or $P 4 / m n c$) require the two anions per cell to occupy sites of symmetry 4 or $4 / m$, neither of which appears consistent with the Keggin structure even with disorder of the Co atom. Moreover, the cell dimensions are similar to those of $\mathrm{H}_{3+n}\left[\mathrm{PV}_{n} \mathrm{Mo}_{12-n} \mathrm{O}_{40}\right] .30-36 \mathrm{H}_{2} \mathrm{O}$ ($n=2,3$) (Sergienko, Porai-Koshits \& Yurchenko, 1980) which were reported to contain anions of non-Keggin but related structure on $4 / \mathrm{m}$ sites in space group $P 4 / m n c$.

Experimental. Green air-stable octahedra, $\{101\}$ faces (Weakley, 1973). Crystal $0.15 \times 0.15 \times 0.15 \mathrm{~mm}$. Film data initially (Weissenberg, $\mathrm{Cu} K \alpha$ radiation, layers $0-8 k l$, SERC Microdensitometer Service, 758 unique reflections); subsequently four-circle diffrac-
tometer data (Edinburgh University CAD-4, graphitemonochromated Mo $K \alpha$). Cell dimensions from θ values of 25 reflections, $14^{\circ}<\theta<15^{\circ}$. $\omega-2 \theta$ scan, $2 \theta_{\text {max }}=50^{\circ}$. Standard reflections $6 \overline{4} 7$ and $\overline{4} 67$, no change. Empirical absorption correction from ψ scan based on $\overline{2} \overline{3} \overline{5} .2965$ reflections scanned, 346 systematically absent, 1301 unique, $R_{\text {int }}=0.076 ; 960$ reflections with $|F| \geq 3 \sigma(F)$ used in refinement. Structure first solved from film data to $R=0.093$ with the assumption that the anion had point symmetry $4 / m$, with Co disordered over W sites, as suggested by the apparent isomorphism with $\mathrm{H}_{3+n}\left[\mathrm{PV}_{n} \mathrm{Mo}_{12-n} \mathrm{O}_{40}\right] \cdot 30-$ $36 \mathrm{H}_{2} \mathrm{O}$; heavy atoms located in E map, O atoms in difference synthesis; with counter data, refinement in $P 4 / m n c$ converged at $R=0.073, w R=0.104$ (56 parameters); an $a b$ initio solution and refinement (on F) at this stage in $P 4 n c$ gave $R=0.069, w R=0.080$ but large σ values and strong correlation coefficients, structure still clearly centrosymmetric; with the assumption that anions of point symmetry $\overline{4}$ were present in two orientations in space group $P 4 / m n c$ (see Discussion) $R, w R$ fell to $0.066,0.095$ (85 parameters), a decrease significant at the 95% confidence level; after the inclusion of $\mathrm{Aq}(4)$ final convergence was reached at $R=0.063, w R=0.089 ; 89$ parameters, $w=\left[\sigma^{2}(F)+\right.$ $\left.0.0047 F^{2}\right]^{-1}$ in last cycle, maximum shift-to-error ratio 0.29 ; $\mathrm{W}(n)$ and $\mathrm{Co}(n)$ were constrained to have the same parameters (decoupling did not lead to a satisfactory refinement); $\mathrm{Ba}(1)$, all W, Co anisotropic; $\mathrm{W}(3), \mathrm{Co}(3)$ non-positive-definite; the final difference synthesis (max. peak height ca $2 \mathrm{e} \AA^{-3}$) suggests partial site occupancy by those water molecules not directly located; all calculations used $S H E L X 76$ (Sheldrick, 1976); scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Final coordinates and isotropic thermal parameters for anion symmetry $\overline{4}$ are listed in Table 1. When the only assumption made during the structure determination is that disorder implied by the notation $M=\mathrm{Co}_{1 / 12} \mathrm{~W}_{11 / 12}$ must occur, the anion is found to have crystallographic point symmetry $4 / \mathrm{m}$ and virtual symmetry $m 3 m$, with the M atoms at the corners of a regular cubo-octahedron; atomic coordinates have been
deposited,* and bond lengths are given in Table 2. Twelve square-pyramidal $M O_{5}$ groups share basal corners but not edges, and have short apical bonds. In addition, there are long $M-\mathrm{O}$ bonds involving the O atoms of the central BO_{4} tetrahedron which has two orientations differing by a 90° rotation about \mathbf{c} (Fig. 1). The title compound is indeed isomorphous with $\mathrm{H}_{3+n}\left[\mathrm{PV}_{n} \mathrm{Mo}_{12-n} \mathrm{O}_{40}\right] .30-36 \mathrm{H}_{2} \mathrm{O}(n=2,3)$ in which the heavy atoms are also disordered and whose anions have been similarly described (Sergienko, Porai-Koshits \& Yurchenko, 1980). The coordinates of corresponding atoms in the anion are similar in all three compounds while the two independent Ba atoms and three of the four water molecules of the title compound correspond to five of the seven independent water molecules of the hydrated acids.

We considered the above description of the structure of the $\mathrm{BCo}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}^{6-}$ and $\mathrm{PV}_{n} \mathrm{Mo}_{12-n} \mathrm{O}_{40}^{5.6-}$ anions to be inadequate, for the following reasons.
(i) There is no evidence, and no reason to expect, that in a free $X M_{12} \mathrm{O}_{40}^{y-}$ anion the $X \mathrm{O}_{4}$ tetrahedron can adopt alternative orientations within a defined $M_{12} \mathrm{O}_{36}$ framework of cubic symmetry. In either orientation, a distortion of the framework would be expected, resulting in the overall tetrahedral symmetry characteristic of the Keggin anion with the heavy atoms grouped in four sets of three.

* Lists of structure factors (point symmetry 4), anisotropic thermal parameters (4 and $4 / \mathrm{m}$) and atomic coordinates ($4 / \mathrm{m}$) have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38940 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ and isotropic thermal parameters $\left(\times 10^{3}\right)$ for anion point symmetry $\overline{4}$

	x	y	z	$U_{\text {iso }}\left(\AA^{2}\right)$
$M(1) \dagger$	$1606(1)$	$2292(1)$	$94(5)$	$22 \ddagger$
$M(2)$	$1861(14)$	$418(17)$	$1311(13)$	$24 \ddagger$
$M(3)$	$-262(17)$	$2040(14)$	$1343(13)$	$22 \ddagger$
B	0	0	0	$7(11)$
$\mathrm{O}(1)$	$2389(22)$	$3401(20)$	$-101(21)$	$31(8)$
$\mathrm{O}(2 A)$	$704(36)$	$2848(35)$	$835(23)$	$45(11)$
$\mathrm{O}(2 B)$	$470(24)$	$2592(30)$	$-611(18)$	$26(8)$
$\mathrm{O}(3 A)$	$2450(28)$	$1613(29)$	$794(20)$	$30(8)$
$\mathrm{O}(3 B)$	$2213(28)$	$1260(30)$	$-560(19)$	$30(8)$
$\mathrm{O}(4 A)$	$2866(28)$	$687(31)$	$1983(20)$	$25(9)$
$\mathrm{O}(4 B)$	$2952(32)$	$352(32)$	$-2000(22)$	$34(11)$
$\mathrm{O}(5)$	$536(18)$	$836(18)$	$480(12)$	$9(5)$
$\mathrm{O}(6 A)$	$968(24)$	$1420(25)$	$1815(15)$	$22(7)$
$\mathrm{O}(6 B)$	$721(28)$	$982(27)$	$-1638(18)$	$31(7)$
$\mathrm{Ba}(1)$	0	5000	2500	$71 \ddagger$
$\mathrm{Ba}(2) \S$	$4762(15)$	$3512(16)$	$592(10)$	$69(5)$
$\mathrm{Aq}(1)$	$1401(33)$	$4781(31)$	$1428(20)$	$127(13)$
$\mathrm{Aq}(2)$	$4602(43)$	$702(43)$	0	$131(18)$
$\mathrm{Aq}(3)$	0	0	$3089(35)$	$106(9)$
$\mathrm{Aq}(4)$	$1710(55)$	$1567(57)$	$3410(41)$	$119(21)$

(ii) The $\mathrm{BCo}^{\mathrm{III}}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}^{6-}$ anion is similar in all properties to $\mathrm{BeCo}^{111}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}^{7-}$ and is obtained by mild oxidation of $\mathrm{BCo}^{11}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}^{7-}$. The latter anions both have the Keggin structure (Weakley, 1973, 1982).
(iii) Several heteropolyanions in which one or several Mo or W atoms have been replaced by V atoms have been shown to have the Keggin structure (Nishikawa, Kobayashi \& Sasaki, 1975; Björnberg \& Hedman, 1980; Klevtsova, Yurchenko, Glinskaya, Detusheva \&

Table 2. Interatomic distances (\AA)

(a) For anion point symmetry $4 / m\left(M=\mathrm{Co}_{1 / 12} \mathrm{~W}_{11 / 12}\right)$			
$\mathrm{B}-\mathrm{O}(5)$	$1.51(3)$	$\mathrm{W}(2)-\mathrm{O}\left(2^{i}\right)$	$1.81(3)$
$\mathrm{W}(1)-\mathrm{O}(1)$	$1.66(3)$	$\mathrm{W}(2)-\mathrm{O}\left(6^{\mathrm{i}}\right)$	$1.92(3)$
$\mathrm{W}(1)-\mathrm{O}(2)$	$1.93(3)$	$\mathrm{W}(2)-\mathrm{O}(5)$	$2.44(3)$
$\mathrm{W}(1)-\mathrm{O}(3)$	$1.86(3)$	$\mathrm{W}(2)-\mathrm{O}\left(5^{\prime}\right)$	$2.39(3)$
$\mathrm{W}(1)-\mathrm{O}(5)$	$2.39(3)$	$\mathrm{Ba}(1)-\mathrm{Aq}(1)$	$2.54(5)$
$\mathrm{W}(2)-\mathrm{O}(3)$	$1.86(3)$	$\mathrm{Ba}(1)-\mathrm{O}\left(4^{\mathrm{Ii}}\right)$	$2.81(5)$
$\mathrm{W}(2)-\mathrm{O}(4)$	$1.75(3)$	$\mathrm{Ba}(2)-\mathrm{O}\left(1^{\text {ii }}\right)$	$2.92(5)$
$\mathrm{W}(2)-\mathrm{O}(6)$	$1.87(3)$	$\mathrm{Ba}(2)-\mathrm{Aq}\left(3^{\text {iii }}\right)$	$2.91(5)$
$\mathrm{W}(1) \cdots \mathrm{W}(2)$	$3.471(4)$	$\mathrm{B} \cdots \mathrm{W}(1)$	$3.471(4)$
$\mathrm{W}(1) \cdots \mathrm{W}\left(2^{\text {ii }}\right)$	$3.468(4)$	$\mathrm{B} \cdots \mathrm{W}(2)$	$3.471(4)$
$\mathrm{W}(2) \cdots \mathrm{W}\left(2^{\text {ii }}\right)$	$3.474(4)$		

Symmetry code: (i) $y,-x, z$; (ii) $-y, x, z$; (iii) $\frac{1}{2}-y, \frac{1}{2}-x, \frac{1}{2}-z$.
(b) For anion point symmetry $\overline{4}\left(M=\mathrm{Co}_{1 / 12} \mathrm{~W}_{1 / 1 / 2}\right)$

$\mathrm{B}-\mathrm{O}(5)$	$1.52(2)$	$M(3)-\mathrm{O}\left(4 B^{\mathrm{iil}}\right)$	$1.66(4)$
$M(1)-\mathrm{O}(1)$	$1.72(3)$	$M(3)-\mathrm{O}(2 A)$	$1.82(5)$
$M(1)-\mathrm{O}(2 A)$	$1.90(4)$	$M(3)-\mathrm{O}(6 A)$	$1.92(4)$
$M(1)-\mathrm{O}(2 B)$	$1.96(3)$	$M(3)-\mathrm{O}\left(3 B^{\mathrm{iii}}\right)$	$1.92(4)$
$M(1)-\mathrm{O}(3 A)$	$1.87(4)$	$M(3)-\mathrm{O}\left(6 B^{\text {iii }}\right)$	$1.94(5)$
$M(1)-\mathrm{O}(3 B)$	$1.92(3)$	$M(3)-\mathrm{O}(5)$	$2.40(3)$
$M(1)-\mathrm{O}(5)$	$2.35(2)$	$\mathrm{Ba}(1)-\mathrm{Aq}(1)$	$2.65(4)$
$M(2)-\mathrm{O}(4 A)$	$1.79(4)$	$\mathrm{Ba}(1)-\mathrm{O}\left(4 A^{\mathrm{ii}}\right)$	$2.94(5)$
$M(2)-\mathrm{O}(3 A)$	$1.91(4)$	$\mathrm{Ba}(1)-\mathrm{O}\left(4 B^{\mathrm{i}}\right)$	$2.74(4)$
$M(2)-\mathrm{O}(6 A)$	$1.91(3)$	$\mathrm{Ba}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$	$2.82(5)$
$M(2)-\mathrm{O}\left(2 B^{i}\right)$	$1.93(3)$	$\mathrm{Ba}(2)-\mathrm{O}\left(1^{\text {ii }}\right)$	$2.96(5)$
$M(2)-\mathrm{O}\left(6 B^{i}\right)$	$1.88(3)$	$\mathrm{Ba}(2)-\mathrm{Aq}\left(3^{\mathrm{iv}}\right)$	$3.07(5)$
$M(2)-\mathrm{O}(5)$	$2.31(3)$		
$M(1) \cdots M(2)$	$3.248(14)$	$M(3) \cdots M\left(2^{\mathrm{V}}\right)$	$3.637(16)$
$M(1) \cdots M(3)$	$3.284(14)$	$\mathrm{B} \cdots M(1)$	$3.474(10)$
$M(2) \cdots M(3)$	$3.312(16)$	$\mathrm{B} \cdots M(2)$	$3.385(13)$
$M(1) \cdots M\left(2^{\text {iii }}\right)$	$3.650(14)$	$\mathrm{B} \cdots M(3)$	$3.558(13)$
$M(1) \cdots M\left(3^{\mathrm{i}}\right)$	$3.699(14)$		

Symmetry code: (i) $y,-x,-z$; (ii) $-y, x, z$; (iii) $-y, x,-z$; (iv) $\frac{1}{2}-y, \frac{1}{2}-x, \frac{1}{2}$
$-z ;(v)-x,-y, z$.

Fig. 1. The $\mathrm{BCo}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}^{6}$ anion, $4 / m$ symmetry, c-axis projection. $M(1)$ and $\mathrm{O}(1)$ lie in the mirror plane.

Fig. 2. The $\mathrm{BCo}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{W}_{11} \mathrm{O}_{39}^{6-}$ anion, $\overline{4}$ symmetry (one orientation), c-axis projection.

Kuznetsova, 1981), including the $\mathrm{PV}_{2} \mathrm{Mo}_{10} \mathrm{O}_{40}^{5-}$ anion in its sodium salt (Sergienko, Detusheva, Yurchenko \& Porai-Koshits, 1981). In the present case, our alternative model assumes that the anion has the Keggin structure, with a disordered Co atom, and has crystallographic symmetry $\overline{4}$ (Fig. 2). The $4 / m$ site is then occupied by two equally weighted anions related by inversion at the B atom. The act of inversion (here equivalent to reflection in the plane $z=0$) brings the heavy-atom set into near self-coincidence. The less strongly scattering set of O atoms is brought into rougher self-coincidence, except for the atoms of the BO_{4} group. These coincidences generate the $4 / \mathrm{m}$ structure shown in Fig. 1. The interatomic distances which result from refinement in this model are given in Table $2(b)$. As usual, the lengths of $M-\mathrm{O}$ bonds increase with the coordination number of the O atom. The values are reasonable in view of the implicit double disorder, except for the bond to the terminal atom
$\mathrm{O}(4 A)$ which appears to be somewhat misplaced. The possible presence of a Keggin anion in two orientations was apparently not considered in the case of $\mathrm{H}_{3+n}\left[\mathrm{PV}_{n} \mathrm{Mo}_{12-n} \mathrm{O}_{40}\right] \cdot 30-36 \mathrm{H}_{2} \mathrm{O}$, or in that of $\left(\mathrm{NBu}_{4}\right)_{3}\left[\gamma-\mathrm{PW}_{12} \mathrm{O}_{40}\right]$ (Fuchs, Thiele \& Palm, 1982) where the anion lies at an inversion centre in space group $P \overline{1}$.

I thank the Science and Engineering Research Council for access to a diffractometer, and Dr A. J. Welch for collecting the intensity data.

References

Baker, L. C. W., Baker, V. S., Eriks, K., Pope, M. T., Shibata, M., Rollins, O. W., Fang, J. H. \& Koh, L. L. (1966). J. Am. Chem. Soc. 88, 2329-2331.
Barrett, A. S. (1972). Diss. Abstr. Int. B, 33, 1475.
Björnberg, A. \& Hedman, B. (1980). Acta Cryst. B36, 10181022.

Fuchs, J., Thiele, A. \& Palm, R. (1982). Z. Naturforsch. Teil B, 37, 1418-1421.
International Tables for X-ray Crystallography (1974). Vol. IV pp. 99, 148. Birmingham: Kynoch Press.
Keggin, J. F. (1934). Proc. R. Soc. London Ser. A, 144, 75-100.
Klevtsova, R. F., Yurchenko, E. N., Glinskaya, L. A., Detusheva, L. G. \& Kuznetsova, L. I. (1981). Zh. Strukt. Khim. 22, 49-61.
Nishikaiva, K., Kobayashi, A. \& Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 3152-3155.
Sergienko, V. S., Detusheva, L. G.. Yurchenko, E. N. \& Poral-Koshits, M. A. (1981). Zh. Strukt. Khim. 22, 37-48.
Sergienko, V. S., Poral-Koshits, M. A. \& Yurchenko, E. N. (1980). Zh. Strukt. Khim. 21, 115-125.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Weakley, T. J. R. (1973). J. Chem. Soc. Dalton Trans. pp. 341-346.
Weakley, T. J. R. (1982). J. Chem. Soc. Pak. 4, 251-256.

Acta Cryst. (1984). C40, 18-20

Structure of Strontium Selenate, SrSeO_{4}

By Hildegard Prévost-Czeskleba
Laboratoire de Chimie des Solides, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, F-34060 Montpellier CEDEX, France

and Helmut Endres
Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69 Heidelberg, Federal Republic of Germany
(Received 30 March 1983; accepted 11 October 1983)

Abstract. $M_{r}=230.58$, monoclinic, space group $P 2_{1} / n$,
$a=6 \cdot 853(1), \quad b=7.352(1), \quad c=7 \cdot 102(2) \AA, \quad \beta=$
$103.43(1)^{\circ}, \quad V=348 \cdot 0(1) \AA^{3}, \quad Z=4, \quad D_{x}=$
$0108-2701 / 84 / 010018-03 \$ 01.50$
$4.401(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad F(000)=416, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.7107 \AA, \quad \mu($ Mo $K \alpha)=25.23 \mathrm{~mm}^{-1}, \quad T=291 \mathrm{~K}$. Single crystals were obtained by hydrothermal syn© 1984 International Union of Crystallography

